Ordered partitions avoiding a permutation pattern of length 3

نویسندگان

  • William Y. C. Chen
  • Alvin Y. L. Dai
  • Robin D. P. Zhou
چکیده

An ordered partition of [n] = {1, 2, . . . , n} is a partition whose blocks are endowed with a linear order. Let OPn,k be the set of ordered partitions of [n] with k blocks and OPn,k(σ) be the set of ordered partitions in OPn,k that avoid a pattern σ. For any permutation pattern σ of length three, Godbole, Goyt, Herdan and Pudwell obtained formulas for the number of ordered partitions of [n] with 3 blocks avoiding σ as well as the number of ordered partitions of [n] with n − 1 blocks avoiding σ. They also showed that |OPn,k(σ)| = |OPn,k(123)| for any permutation σ of length 3. Moreover, they raised a question concerning the enumeration of OPn,k(123), and conjectured that the number of ordered partitions of [2n] with blocks of size 2 avoiding σ satisfied a second order linear recurrence relation. In answer to the question of Godbole, et al., we establish a connection between |OPn,k(123)| and the number en,d of 123-avoiding permutations of [n] with d descents. Using the bivariate generating function of en,d given by Barnabei, Bonetti and Silimbani, we obtain the bivariate generating function of |OPn,k(123)|. Meanwhile, we confirm the conjecture of Godbole, et al. by deriving the generating function for the number of 123-avoiding ordered partitions of [2n] with n blocks of size 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern Avoidance in Ordered Set Partitions

In this paper we consider the enumeration of ordered set partitions avoiding a permutation pattern of length 2 or 3. We provide an exact enumeration for certain special cases, and a recursive technique to exactly enumerate the appropriate set partitions in general. We also give some asymptotic results for the growth rates of the number of ordered set partitions avoiding a single pattern; includ...

متن کامل

Restricted Dumont permutations, Dyck paths, and noncrossing partitions

We complete the enumeration of Dumont permutations of the second kind avoiding a pattern of length 4 which is itself a Dumont permutation of the second kind. We also consider some combinatorial statistics on Dumont permutations avoiding certain patterns of length 3 and 4 and give a natural bijection between 3142-avoiding Dumont permutations of the second kind and noncrossing partitions that use...

متن کامل

Generalised Pattern Avoidance

Recently, Babson and Steingŕımsson have introduced generalised permutation patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation. We will consider pattern avoidance for such patterns, and give a complete solution for the number of permutations avoiding any single pattern of length three with exactly one adjacent pair of letters. For eight...

متن کامل

Pattern Avoiding Permutations & Rook Placements

First, we look at the distribution of permutation statistics in the context of pattern-avoiding permutations. The first part of this chapter deals with a recursively defined bijection of Robertson [6] between 123and 132-avoiding permutations. We introduce the general notion of permutation templates and pivots in order to give a non-recursive pictorial reformulation of Robertson’s bijection. Thi...

متن کامل

Pattern Avoidance in Matchings and Partitions

Extending the notion of pattern avoidance in permutations, we study matchings and set partitions whose arc diagram representation avoids a given configuration of three arcs. These configurations, which generalize 3-crossings and 3-nestings, have an interpretation, in the case of matchings, in terms of patterns in full rook placements on Ferrers boards. We enumerate 312-avoiding matchings and pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2014